
  
  
  

  

SOLUTION   

TQ1     [5   points]   

1.1  Based  on  Einstein’s  relationship,  E=mc 2 .  The  relationship  is  Doing  a             
mass-energy   balance:     

                                                        [1   point]   5M C 0M C 62M C3
⨀

2 + 3
⨀

2 =  
⨀

2 + EGW   

M C3
⨀

2 = EGW                   [1   point]   

 .988×10  kgM
⨀
= 1 30  

                                                                 [1   point]  (1.988×10  kg)(9×10   )EGW = 3 30 16
s2
m2

 

   .36×10 JEGW = 5 47                  [1   point]   

Now   using     we   have   the   ratio:  ×10 JESN = 2 44  

 .7×10ESN
EGW

= 3 −4      [1   point]   

GW150914  released  approximately  2865  times  more  energy  than  a  supernova            
explosion.   E SN    <<   E GW .     



  
  
  

  

SOLUTION   

TQ2     [10   points]   

2.1     The   solar   radiation   intensity   (   I T )   received   on   Earth   is:     

T     IT =   P s
4πrs−t2

= σ s
4 • ( Rs

rs−t)
2

 [1   point]   

with   .  πσR TP s = 4 s
2

s
4  

Also,   Earth   would   absorb   energy   at   this   rate:   

 πR σT  P abs = IT t
2 = π s

4 • ( rs−t
R •Rs t)2  

With     as   the   radius   of   the   planet   “disk”. .4×10 mRt = 6
6                 [1   point]   

Then,  by  thermal  equilibrium,  the  absorbed  radiation  would  be  radiated  over  the              
planet’s   surface:   

 P abs = P rad  

With   

 πσR TP rad = 4 t
2

t
4  

 σT πσR T    π s
4 • ( rs−t

R •Rs t)2 = 4 t
2

t
4   [1   point]   

  ∙ 78.58 K .43 °C     T t = T s ( Rs
2 rs−t)

2
1

= 2 = 5   [1   point]   

This   would   be   very   cold   but   still   viable   to   harbor   life.   

2.2     The   Earth’s   absorbed   radiation,   considering   the   albedo,   is:   

.7∙πσT  P ′
abs = 0 s

4 • ( rs−t
R •Rs t)2    [1   point]   

 (0.7) 54.81 K − 8.34  °C   T ′
T = T s 4

1

• ( Rs
2 rs−t)

2
1

= 2 = 1    [1   point]   

2.3     If   Earth   reabsorbs   58%   of   the   70%   re   emitted   energy,   then:     

    [4   points]    0.7 85.68 K 2.53  °C     T ′′
T = T s [ + (0.58∙0.7)] 4

1

• ( Rs
2 rs−t)

2
1

= 2 = 1  

  

  



  
  
  

  

SOLUTION   

TQ3     [10   points]   

3.1     Since   the   path   between   A   and   B   is   parabolic,   the   total   energy   of   the   
spacecraft   is   zero,   

 ,       ↔   ε .EAB = 0   = 1  

So,   when   you   get   to   point   B,   then   

mv ;E =   2
1 2

B − rB
GMm = 0  [1   point]   

From   where   

   vB =  √ rB
2GM                               [1   point]   

Replacing   with   available   values   

 ≈ 3, 5 km s     vB =√ 6,8×106
2 × (6,67×10 ) × (6,4×10 )−11 23

5 −1  [1   point]   

  

3.2    There   are   two   possible   solutions   

Solution   A   

Immediately   after   breaking   the   total   energy   and   the   angular   momentum   change   
since   the   braking   force   is   tangential,   but   along   the   elliptical   path   BC   the   values   
  with   which   it   passes   through   are   conserved   and   take   on   during   the   entire   
journey.   C;   then   applying   conservation   of   energy   between   points   B’   (immediately   
after   braking)   and   C   as   well   as   conservation   of   the   angular   momentum   between   
B'   and   C,   we   have   

mv mv     Eq. 1 2
1 2

B´ − rB
GMm = 2

1 2
C − RM

GMm  [1   point]   

v r v R     Eq. 2 L = m B´ B = m C M  [1   point]   

From  these  two  equations  we  solve  for  v C  and  it's  result  is  used  to  calculate  the                  
total   energy   in   C   which   gives   us:     

− .10 J     Eq. 3a  Eelipse =
GMm
R +rM B

≈   − 2 × 1011  [2   points]   

In   both   methods,   this   and   next,   two   points   for   getting   the   equation   and   two   
points   for   calculation   +   negative   sign   +   unit.   



  
  
  

  

SOLUTION   

TQ4     [10   points]   

4.   1     To   get   the   number   of   photons   per   second   we   have   to   multiply   the   Flux   by   
the   area   of   the   dish,   to   know   the   incoming   energy   per   second,   and   divide   this   by   
the   energy   of   a   photon.   

For   :  .32 mm .2×10 mλ1 = 0 = 3 −4  

Energy   of   a   photon:    .2076 Jules E = λ
hc = 6 × 10−22                  [1   point]   

Area   of   the   disk:  A R 13 m  = π 2 = 1 2  

Number   of   photons   per   second:   

  ≈ 1820 photon/s n1 = E
flux×A   [1   point]   

  

4.2     Same   calculation,   just   changing   the   energy   of   the   individual   photons:   

For    .6 mm .6 mλ2 = 8 = 8 × 10−3  

Energy   of   a   photon:   .31 Jules E = λ
hc = 2 × 10−23                   [1   point]   

Number   of   photons   per   second:     

8900 photon/s n2 = E
flux×A ≈ 4  [1   point]   

  

4.3     Spatial   resolution   of   a   single   telescope   is   given   by:   

 .22θ = 1 λ
D  

where   D   represents   the   diameter   of   the   dish.    This   value   will   be   given   in   radians,   
so   it   must   be   converted   to   arcsec   afterwards.   

For   a   frequency   of   74.9   GHz,   the   corresponding   wavelength   is:   

 mmλ = f
c = 4  [1   point]   

And   the   spatial   resolution:   

.22  ≈ 83.9 arcsec θ = 1 12 m
4mm  [1   point]   



  
  
  

  

  

4.4     For   an   array   the   correct   expression   is:     

 θ = λ
B or    θ = λ

2B  [1   point]   

being   B   the   longest   baseline   in   the   array.   

So   in   this   case:   

 ≈ 0.0516 arcsecθ = 4 mm
16 km or   .0258 arcsec0  [1   point]   

  

4.5     The   SEFD   is   a   characteristic   flux   of   a   system,   found   by   dividing   the   
characteristic   energy   associated   to   the   so-called   temperature   of   the   antenna   by   
its   effective   area:   

   EFDS = Ae

2kT sys  [1   point]   

As   no   additional   information   is   given   about   the   effective   area,   the   actual   physical   
area   of   the   array   should   be   used:   

  

4  2  6569 m  A = 5 π×6( 2) + 1 π×3.5( 2)≈ 2  [0.5   point]   

Substituting   the   Boltzmann   constant,   the   given   temperatura   of   the   antenna,   and   
converting   the   answer   to   Jansky   we   get:   

EFD ≈ 290.5 JyS  [0.5   point]   

NOTES:   

Question   We   indicate   the   answer   
must   be:   

Tolerance   

4.a   Approximated   to   the   
nearest   integer   

+/-   10   photons   

4.b   Approximated   to   the   
nearest   integer   

+/-   10   photons   

4.c   2   digit   of   precision   [83.0   ,   85.0]   

4.d   2   digits   of   precision   0.05   exact   

4.e   2   digit   of   precision   [289.0   ,   291.0]   



    

    
  
  

  
SOLUTION   

TQ5     [10   points]   

5.1     Pressure   inside   the   flux   tube   =   Pressure   outside   the   flux   tube   (surroundings)   

(   Magnetic   pressure   +   Gas   pressure   inside   )   =   Gas   pressure   outside   

Particularly,   

                                         
B2
0

2μ0
+ P gasin = P gasout    [2   points]   

                           Eq.   (1)  
B2
0

2μ0
= P 0out

− P 0in
 

Similarly,   for   a   particular   height   z,   

           Eq.   (2)    2μ0
B(z)2 = e−z/H P( 0out

− P 0in)   

  [2   points]   

Dividing   equation   (2)   to   (1),   

    B2
0

B(z)2 = e−z/H    

  

To   finally   get   

                                               [3   points]  eB (z) = B0
−z/2H  

  

  

5.2     At   ,    z = H eB = B0
−z/150  

.03 .3 e0 = 0 − z
2x150   

 00 × ln 10 z = 3    

00 × 2.301z = 3   

90 kmz = 6  [3   points]   

  



  
  
  

  

SOLUTION   

TQ6     [12   points]   

6.1     From   Wien’s   law:   

     λ max =   T (K)ef f  

2.898×10 m·K−3
=   4995 K

2.898×10 m·K−3
  

     5.8 m  580.2 nmλ max =   × 10−7 =                    [2   point]   

  

6.2     With   the   parallax   doable   to   find   the   distance   from   Earth:     

  8.55 pcd =   1
pllx (arcsec) =

1
0.035 arcsec = 2                 [1   point]   

  
 m 5 log(d[pc])  5 MV =   v  −   +        

  
 8.3  5 log(28.57)  5  6.02MV =   −   +   =                    [1   point]   

  

6.3                   [2   point]   

  

  

  

  

  

  

  

  

  

  

Each  division  on  Y  has  0.002  kms¯¹,  so  the  maximum  radial  velocity  is  43.662                
kms¯¹  and  the  minimus  is  43.626  kms¯¹.  Then,  the  mean  radial  velocity  of               
Macondo   is    .  43.644 km sˉ¹vr  =    



  
  
  

  

6.4  The  tangential  velocity  of  Macondo,  from  the  plot,  is  its  variation  from  the                
mean   system   velocity     

  43.662 km sˉ¹  43.644 km sˉ¹  0.018 km sˉ¹vs =   −   =     

The  masses  of  the  star  and  the  planet  are  known  so  it  is  only  needed  to  find                   
orbital  velocity  of  Melquiades.  But  first  it  is  important  to  convert  the  mass  of  the                 
star   to   kg.     

.7M 1.4  kg0
⊙
× 1M

⊙

1.989×10 kg30

 
=   × 1030                 [1   point]   

              [1   point]  .02 km   40 kmvp  =  
ms
mp

× vs = 7×10  kg26
1.4×10  kg30

× 0 · s−1 =   · s−1  

6.5    As   the   motion   of   the   planet   is   circular,   the   orbital   period   is:   

  T =   vp
2π × a      

being    a    the   distance   to   the   central   star.     

  

With   the   3 rd    Kepler’s   law,   the   orbital   period   is       T 2 =   4π
2

Gms
× a3     

Then,   combining   both   expressions   of    T    is   possible   to   find    a   

  ( vp
2π × a)2 =   4π2Gms

× a3  

  ( vp
2π)2 4π2

Gms = a    

    

   .25×10   m 0.48 au a = 7 10
  =                    [2   point]   

With   the   previous   solution   is   able   to   find   the   orbital   period:   

     .27  s  147 days T =   vp
2π × a =   36000 m·s−1

2π×(7.21x10 m)10

= 1 × 10 
7

=                    [2   point]   

  



 SOLUTION 

 TQ7  [13 point] 

 7.1  Observing the plot, it is possible to estimate  the wavelength of both Hα lines 
 and later find the velocity of each star by Doppler. 

 [2 point]  𝑣 
 𝐴    =    6560 . 4     Å − 6562 . 8        Å 

 6562 . 8     Å ×   ( 3 · 10⁵     𝑘𝑚 · 𝑠 − 1 )   =   − 110     𝑘𝑚 · 𝑠 − 1    

 [2 point]  𝑣 
 𝐵    =    6565 . 4     Å − 6562 . 8        Å 

 6562 . 8     Å ×   ( 3 · 10⁵     𝑘𝑚 · 𝑠 − 1 )   =   + 119     𝑘𝑚 · 𝑠 − 1    

 So, Menkalinan A is approaching and Menkalinan B is moving away from us. 

 [1 point] 



 7.2  Applying the 3  rd  Kepler’s law, the total mass  of the system is : 

 𝑚 
 𝐴    

>     𝑚 
 𝐵    

⇒    α
 𝐵    

> α
 𝐴 

α
 𝐵 

α
 𝐴 

   =     1 .  026 

 [2 point] α   = (   α
 𝐴    

+    α
 𝐵 

) /2    =
α

 𝐵 

 2 ( 1 +
α

 𝐴 

α
 𝐵 

)         =     1 .  97 
   α

 𝐵 

 2 

 𝑀 
 𝑡𝑜𝑡 

=  4 π 2 

 𝐺 ×
 0 . 00330  '' ×  1  𝑟𝑎𝑑 

 206265  '' ( ) 3 

•    81 . 1  𝑙𝑦    ·       9 . 46 • 10  15  𝑚 
 1  𝑙𝑦 ( ) 3 

 3 . 96  𝑑 •  86400  𝑠 
 1  𝑑 ( ) 2 

 [2 point]  𝑀 
 𝑡𝑜𝑡 

=  9 .  41 ·  10  30  𝑘𝑔 =  4 .  73  𝑀 
⊙

   

 7.3 

 𝑚 
 1 
    /     𝑚 

 2 
=  1 .  026 

 𝑀 
 𝑡𝑜𝑡 

   =     𝑚 
 1 

+  𝑚 
 2 

=  1 .  026 ·  𝑚 
 2 

+  𝑚 
 2 

=  2 .  026     𝑚 
 2 

=  9 .  41 ·  10  30     𝑘𝑔 

 [1 point]     𝑚 
 2 

=  1 .  014 ·  10  31     𝑘𝑔     /     2 .  026    =  4 .  64 ×  10  30        𝑘𝑔    =     2 .  34  𝑀 
⊙

 [1 point]     𝑚 
 1 

=  1 .  026 ·  𝑚 
 2 
   =        2 .  40     𝑀 

⊙

 7.4  Using the mass/luminosity relation given: 

 𝐿 
 1 

 𝐿 
⊙

=    (
 𝑚 

 1 

 𝑀 
⊙

) 3 . 5 =    (   
 2 . 40  𝑀 

⊙

 𝑀 
⊙

   ) 3 . 5    =  21 .  3       

 [1 point]  𝐿 
 1 
   =        21 .  3     𝐿 

⊙
   

 𝐿 
 2 

 𝐿 
⊙

=    (
 𝑚 

 2 

 𝑀 
⊙

) 3 . 5 = (   
 2 . 34  𝑀 

⊙

 𝑀 
⊙

   ) 3 . 5    =  19 .  5       

 [1 point]  𝐿 
 2 
   =           19 .  5  𝐿 

⊙
   



  
  
  

  

SOLUTION   

TQ8     [15   points]   

8.1     Assuming   R=6378   km   (as   per   the   table   of   constants)     

x  R (4°36 18 ) 4°35 30 )] 1.4842 kmΔ =   · [ ′ ′′ − ( ′ ′′ · π
180 =    

 y (74°3 19 ) 74°3 15 )] .1237 kmΔ = R · [ ′ ′′ − ( ′ ′′ · 180
π·cos(4,35,54) = 0  

 z 3.100 .296)  .196 kmΔ = ( − 3 =   − 0       

             [2   points] 
  

 .502 km  d2−3 = √(x )2 + y2 + z2 = 1                                                [1   point] 

  

8.2   Estimate  the  angular  separation  (in  degrees)  between  Guadalupe  (2)  and             
Monserrate  (3)  as  observed  from  the  National  Astronomical  Observatory  of            
Colombia   (1).   Take   point   1   as   the   vertex.     

Using   the   same   method   as   part   8.1:   

.722 kmd1−2 = 2     [2   points]   

.580 kmd1−3 = 2      [2   points]   

Using   Cosine   rule   for   spherical   triangle,   

 os(A) .841c = 2 d  d1−2 1−2

(d +d  − d )1−2
2

1−3
2

2−3
2

= 0  

   32.78°A =     [2  points]    

  

8.3   

 α = tan−1 ( cos(β)·cos(λ)
−sin(β)·sin(ε) + cos(β)·cos(ε)·sin(λ))   

 2°43 3   h 50m 52sα = 1 ′ ′′ = 0                [3   points]   

 in δ = s −1 (sin(β) os(ε) os(β) in(ε) in(λ))· c + c · s · s  

°33 43δ = 1 ′ ′′               [3   points]   



  
  
  

  

SOLUTION   

TQ9     [15   points]   

  

  

  

  

  

  

  

  

  

Let  P  and  C  be  the  centers  of  Pluto  and  Charon  respectively,  and  CM  their  center  of                   

mass.  Clearly   and  .  The  effective  gravitational  field  at    RCM − P = 9
1   RCM − C = 9

8       

points   A   and   B   are   given   by:   

[By   recognizing   the   vectorial   nature   of   gravities/forces/fields]  [4   points]   

 r r    g→A =
GMP

(R−r)2
ˆ − r2

GMC ˆ − ω2 R( 98 − r) r̂   [1   point]   

r r      g→B =
GMP

(R+r)2
ˆ + r2

GMC ˆ − ω2 R( 98 + r) r̂  [1   point]   

  

where   is  the  angular  speed  common  to  both  Pluto  and  Charon.  Thus,  the   ω2 = 9
R3

GMC              

gravitational   accelerations   at   these   points   are:   

   [by   finding   angular   speed]     [2   points]   

  gA =
GMP

(R−r)2
− r2

GMC −
R2

GMC 8( − 9 rR)  

    

  gB =
GMP

(R+r)2
+ r2

GMC −
R2

GMC 8( + 9 rR)  

  



  
  
  

  

Factorizing   the   expression   to   obtain   formulas   proportional   to   Charon’s   mass    [1   point] :     

 −  gA = r2
GMC 1[ − MC

MP ( rR)
2 1

1−( r
R)

2 + ( rR)
2 8( − 9 rR)]  

    g    B = r2
GMC 1[ + MC

MP ( rR)
2 1

1+( r
R)

2 − ( rR)
2 8( + 9 rR)]  

Replacing   the   numerical   value   of   the   ratio   of   the   two   masses:     

 −  gA = r2
GMC 1[ − ( rR)

2 8
1−( r

R)
2 + ( rR)

2 8( − 9 rR)]  

    g    B = r2
GMC 1[ + ( rR)

2 8
1+( r

R)
2 − ( rR)

2 8( + 9 rR)]  

Noting  that  the  expressions  in  square  brackets  are  dimensionless,  it  is  helpful  to  replace                
the   given   values   of     and   ,   resulting    [2   points   by   expressions   of     and   ] :   r R gA gB   

 −gA = r2
GMC (0, 9929)9  

    g  B = r2
GMC (0, 9933)9  

The   percentage   difference   with   respect   to   Charon’s   normal   gravity     is   g0 = r2
GMC   

   [1   point]  ∙100% , 04% ×10 %     g0

g − g|| A| | B|| = 0 0 = 4 −3  



 SOLUTION 

 TQ 10  [15 points] 

 10.1  The maximum duration occurs if Earth passes  exactly along the diameter of 

 the Sun. Now consider the following figure, where Sun rays are depicted as 

 traveling to the right towards the hypothetical distant observer (reason why they 

 can be considered parallel): 

 The arc along the circumference associated to the transit, 2α, can be easily found 
 looking at the shaded triangle: 

 [2 points] α =  𝑠𝑖𝑛 − 1 (
 𝑅 

 ☉ 

 𝑅 
 𝑜𝑟𝑏 

)

 being R  orb  the orbital radius of the Earth. Now the  time of the transit can be 
 found by considering the angular velocity of the Earth, for instance by means of 
 the following proportionality relations: 

 [2 points] 
 𝑡 

 𝑡𝑟 

 𝑇 
 𝑜𝑟𝑏 

=  2 α
 2 π =

 𝑠𝑖𝑛 − 1 (
 𝑅 

 ☉ 

 𝑅 
 𝑜𝑟𝑏 

)

π

 Substituting with the known values for these quantities we get, i.e., 

 [1 point]  𝑡 
 𝑡𝑟 

∼  12 .  97     ℎ    =     12  ℎ     58  𝑚 

 10.2  First  of  all  it  must  be  said  that  the  minimum  orbital  period  is  obtained  if  we 
 assume  that  the  transit  occurs  along  the  diameter  of  the  star.  In  other  cases,  the 
 planet  would  be  crossing  a  shorter  path  in  front  of  the  star  during  the  same  time, 



 meaning  that  it  would  have  a  smaller  angular  velocity  and  therefore  a  longer 
 period. 

 That  said,  it  means  that  we  can  resort  to  the  same  expression  of  10.1,  yet  this 
 time we need 2 additional elements: 

 ●  Using the small angle approximation: 

 [1  point]  𝑠𝑖𝑛 (α) ∼ α

 ●  Invoking the full expression for the orbital period: 

 [1 point]  𝑇 
 𝑜𝑟𝑏 

=  2    π

 𝐺  𝑀 
*

 𝑅 
 𝑜𝑟𝑏 
 3/2 

 Combining these results, we get: 

 [2 points] 
 𝑡 

 𝑡𝑟 

 𝑇 
 𝑜𝑟𝑏 

=
 𝑡 

 𝑡𝑟 
 2    π

 𝐺  𝑀 
*

 𝑅 
 𝑜𝑟𝑏 
 3/2 =

 𝑅 
⋆

 𝑅 
 𝑜𝑟𝑏 

π

 And solving for R  orb  : 

 [2 points]  𝑅 
 𝑜𝑟𝑏 

=
 𝐺  𝑀 

*
 𝑡 

 𝑡𝑟 
 2 

 2  2  𝑅 
*
 2 

 Finally putting this last result back into the expression for the orbital period: 

 [2 points]  𝑇 =
π 𝐺  𝑀 

*

 4  𝑅  3  𝑡 
 𝑡𝑟 
 3 

 At this point, just a numerical evaluation is needed, though a more elegant 
 solution can be achieved by means of scaling relations by noting that this very 
 same expression must be true in the case of the Earth-Sun system as seen from 
 far away. Having that 31 minutes is the 4% of 12.94h: 

 [2 points]  𝑇 =  365 .  25 ·  0 . 1 

 0 . 1  3 ·  0 .  04  3 ∼  2 .  3     𝑑  í  𝑎𝑠 ∼  2  𝑑     7  ℎ 

 These values were inspired by the planetary system Trappist 1. 



  
  
  

  

SOLUTION   

TQ11     [15   points]   

11.1   

  
  
  

                  [1   point]   
  
  
  
  
  

    
  

 M mvE =   − R
GMm + 2

1 2       [1   point]   

At   points   A   and   B,   the       is   the   same;   so,   if     is   minimum,   EM   is   minimum:  v v  

We   know   that   the   mechanical   energy   for   an   elliptical   orbit   is   given   by:   

 ME =   − 2a
GMm          [1   point]   

    

where   2a   is   the   length   of   the   major   axis.   

Since   EM   must   be   minimal,   then   2a   must   be   minimal                                      [1   point]   

  

  

  

  

  

  

                                                                                                                            [1   point]   

  

  



  
  
  

  

O:    Center   of   the   Earth   and   one   of   the   focus   of   the   ellipse.   

  F:    the   other   focus   of   the   ellipse   

B F aO + B = 2         [1   point]   

 ,   must   be   minimal.  B F aO + B = 2  

F    takes   an   arbitrary   position,   so   to   minimize,   BF   must   be   perpendicular   to   OF:   

    

  

  

            [2   points]   

  

  

    

    

  

                 [1   point]   

  

  

  

                                                                         [1   point]  B FO + B = R + R
√2

 

  a R2 =   + R
√2

  

This   is   the   minimum   value   it   can   take   

Correspondingly,   the   expression   for   the   minimum   velocity   is   

                                            [1   point]   v =√    2GM
(1+  )R √2

 

Using   the   M   and   R   values   for   the   Earth,   the   minimum   velocity   is   

                                              [1   point]  195 v = 7 s
m  



  
  
  

  

11.2      Furthermore,   ,   where    e    is   the   eccentricity  F  e∙aO = 2  

                                                             [2   points]   e  (1 )R
√2

= 2 2
 R + 1

√2
 

                                                                    [1   point]    .414e = 1
1+√2

= 0     

  

  

  



  
  
  

´   

 SOLUTION   

TQ12     [15   points]   

12.1   For  a  satellite  that  describes  a  uniform  circular  motion  of  radius  r  around                
the   star   and   mass   M,   we   have:     

 v = R[ Hodograph] =√ r
GM  [1   point]   

12.2    − ra→ = r2
Gm ˆ                 [1   point]   

  
r ωL = m 2              [1   point]   

  
  a − r→ → = L

GMmω ˆ = Δt
Δ v →  

  

  L
GMm

Δt
Δθ = || Δt

Δv |
|  

  
 v ΔθΔ = ± L

GMm  

k = L
GMm                                         [2   points]   

12.3        RL = mvc                  [1   point]   

  

 kc = L
GMm = vc =√ R

GM    [1   point]   

  
12.4  In  the  following  scheme,  the  hodographic  circumference  has  been            
constructed   as   follows:     

● For  ,  the  velocity  vector  is  drawn  in  arbitrary  units  (3,  for  instance)   0θ =               

corresponding  to  the  velocity  in  the  periastron, .  Its  head  determines        vP     

the   point   .  A   

● For  ,  the  velocity  vector  is  drawn  diametrically  opposite  in  the     πθ =             

apastron,  .also  in  arbitrary  units.  Its  head  determines  point  .  The  vA         B   

hodograph  must  pass  through  points   and  .  Therefore,  the  radius  of       A   B      

the   hodograph   must   be   equal   to:   

 RHodograph = 2
v +vP A       [1   point]   

And  the  “distance”   d   from  the  star  to  the  center  of  the  circumference               
will   be:   

 d = 2
v −vP A            [1   point]   

  



  
  
  

  
  
  
  

  
[2   points]   

12.5    In   the   following   scheme,   the   hodographic   circumference   has   been   
constructed   as   follows:     

● For  ,  the  velocity  vector  is  drawn  in  arbitrary  units  (4,  for  instance)   0θ =               

corresponding  to  the  velocity  in  the  periastron,  that  is  .  Its  head           vP    

determines  the  point   .  Then  the  velocity  vector  is  drawn  diametrically     A         

opposite  in  the  apastron,  that  is,  .  Its  head  determines  point  B       vA = 0       

that  coincides  with  the  star.  The  hodograph  must  pass  through  points  A              
and   B.   Therefore,   the   radius   of   the   hodograph   must   be   equal   to:   

 RHodograph = 2
vP             [1   point]   

And   the   distance     from   the   star   to   the   center   of   the   hodographic  d  

circumference   
 d = 2

vP                 [1   point]   
  

  
  

   [2   points]   

  



  
  
  

  

SOLUTION   

TQ   13     [15   points]   

  13.1     A   single   electron   deposits   energy   in   the   CCD,   as   follows:   

E deposited    =   stopping   power   x   ρ si    x   thickness   

.012 0.06cm 22.9 keVEdeposited = 3 g
MeV cm2

× cm3
2.34g ×   = 4  [4   points]   

Since  an  electron  with  15  MeV  energy  deposits  422.9  keV,  we  must  calculate  the                
number   of   pairs   electron/hole   

22.9keV4 × 1
2.36eV = 1.79x105 h

e  [4   points]   

How   many   pixels   will   be   able   to   excite      pairs   of   e/h?  1.79x105  

 x 16 pixels1.79x105 1
250 = 7   [2   points]   

  

13.2     The   number   of   electrons   entering   the   detector   area   is:   

 lux  area  tf ×   ×     [1   point]   

  .03s 0 ecm s2
600 e × 1.3  .3[ × 1 ] cm2 × 0 = 3 −  [1   point]   

~30  electrons  enter  the  detector  area,  and  we  know  that  one  electron  excites               
716   pixels,   the   total   number   of   excited   pixels   is:   

16 0.42 electrons .18 pixels7 pixels
electron × 3 = 2 × 104  [1   point]   

If  the  CCD  has  a  total  of  1024x1024  pixels  =   then  the  total            .048  10 pixels1 ×   6     

percentage   of   pixels   that   will   be   driven   in   a   single   image   is   ~   2.08%            [2   points]   

  

    



 SOLUTION 

 TQ14  [35 points] 

 14.1  Let M be the mass of the Sun, then, equating  the gravitational force with the force 
 Centripetal 

−  𝐺𝑀𝑚 

 𝑅 
 0 
 2  𝑟 

^
=−

 𝑚  𝑣 
 0 
 2 

 𝑅 
 0 

 𝑟 
^

 [1 point]  𝑣 
 0 
 2 =

 𝐺  𝑀 
 𝑠𝑢𝑛 

 ́  

 𝑅 
 0 

 14.2  The mechanical energy of Venus (before collision)  is: 

 [1 point]  𝐸 
 𝑖 

=−  𝐺𝑀𝑚 

 𝑅 
 0 

 2    +  1 
 2  𝑚  𝑣 

 0 
 2    =    −  𝐺𝑀𝑚 

 2     𝑅 
 0 

 2    

 14.3  Since the comet (when far away) moves radially  towards the sun, it has no angular 
 momentum (with respect to the origin in the Sun). Then the angular momentum of 
 Venus is the same as Venus 

 [1 point]  𝐿 =  𝑅 
 0 
 𝑚  𝑣 

 0 

 This allows us to find the component angular of the Venus velocity just after the 
 collision. The angular momentum just after the collision is 

 [2 points]  𝐿 =  𝑅 
 0 

 𝑚 + α 𝑚 ( ) 𝑣 
θ



 Since the angular momentum is conserved it follows that 

 [2 points]  𝑣 
θ

=
 𝑣 

 0 

 1 +α

 The  conservation  of  the  linear  momentum  in  the  radial  direction  must  be  realized  that 
 the  interaction  between  Venus  and  the  comet  are  internal  forces  and,  therefore,  to 
 calculate  the  velocity  of  the  comet  we  can  ignore  the  effect  introduced  by  the  interaction 
 between the comet and Venus. The comet has zero energy, so 

 [2 points]  𝐾 =−  𝑈 =+  𝐺𝑀 α 𝑚 
 𝑅 

 0 
=  1 

 2 α 𝑚  𝑣 
 𝑐 
 2 

 v is the velocity of the comet just before the collision ignoring the effect introduced by 
 Venus). It follows that 

 [1 point]  𝑣 
 𝐶 
 2 =  2  𝐺𝑀 

 𝑅 
 0 

 We now apply the conservation of linear momentum along the radial direction 

 [1 point] α 𝑚  𝑣 
 𝐶 

=  𝑚 + α 𝑚 ( ) 𝑣 
 𝑟 

 where v  r  is the velocity of Venus-2 just after the  collision. It follows that 

 [1 point]  𝑣 
 𝑟 

= α
 1 +α  𝑣 

 𝐶 

 14.4  Venus-2 mechanical energy (we evaluate it just  after the collision) is: 

 [2 points]  𝐸 
 𝑓 

=  𝑈 +  𝐾 =−  𝐺𝑀𝑚  1 +α( )
 𝑅 

 0 
+  1 

 2  𝑚  1 + α( )  𝑣 
θ
 2 +  𝑣 

 𝑟 
 2 ( )

 [2 points] =    −  1 + α( )  𝐺𝑀𝑚 
 𝑅 

 0 
+  1 

 2  1 + α( )  2 α
 1 +α( ) 2 

+  1 

 1 +α( ) 2 
⎡⎢⎣

⎤⎥⎦
 𝐺𝑀𝑚 

 𝑅 
 0 

 [1 point] =    −  𝐺𝑀𝑚 
 2  𝑅 

 0 

 1 + 4α 
 1 +α( ) =  𝐸 

 𝑖 
 1 + 4α 
 1 +α( )

 14.5  ̈ Venus-2¨ orbit is obviously no longer a circle.  Since the energy is negative it must, 
 therefore, be elliptical. It has to 

 [2 points] 
 𝐸 

 𝑖 

 𝐸 
 𝑓 

=
 𝑎 

 𝑓 

 𝑎 
 𝑖 

=
 𝑎 

 𝑓 

 𝑅 
 0 



 Here a  i  and a  f  are the semi-major axes of the orbits  of Venus and Venus-2, respectively. It 

 follows that  [3 points]  𝑎 
 𝑓 

=  𝑅 
 0 

 𝐸 
 𝑖 

 𝐸 
 𝑓 

=  𝑅 
 0 

 1 +α
 1 + 4 α

 14.6  Using Third law is Kepler, we have 

 [3 points] 
 𝑇  ' 

 𝑇 =
 𝑎 

 𝑓 

 𝑟 
 0 

( ) 3/2 

=  1 +α
 1 + 4 α( ) 3/2 

 the year is shortened. 

 14.7  For the ‘Venus-2’ to collide with the Sun, the  perihelion radius of post-collision 
 orbit should be 

 𝑟 
 𝑝 

=  𝑅 
⊙

=  6 .  955×  10  8  𝑚 

 [1  point] =     6 . 955×  10  8 

 0 . 723  𝑥  1 . 496×  10  11  𝑅 
 0 

 [0.5 points]  𝑟 
 𝑝 

=  0 .  00643  𝑅 
 0 

 [0.5 points]  𝑟 
 𝑎 

=  𝑅 
 0 

 Hence 

 [1 point]  𝑎 
 𝑐 

=  𝑟 
 𝑝 

+  𝑟 
 𝑎 ( ) /2 =  0 .  5032  𝑅 

 0 

 𝑎 
 𝑐 

 𝑅 
 0 

=  0 .  5032 =
 1 +α

 𝑐 

 1 + 4 α
 𝑐 

α
 𝑐 

=  1 − 0 . 5032 
 4×0 . 5032 − 1 

 [2 points] α
 𝑐 

=  0 .  4905 

 14.8  For post-collision orbit, 

 𝑣 
θ

=  1 
 1 +α

 𝑐 
 𝑣 

 0 

 𝑣 
 𝑟 

=
 2 α

 𝑐 

 1 +α
 𝑐 

 𝑣 
 0 

 𝑣 
 𝑓 

=  𝑣 
 𝑟 
 2 +  𝑣 

θ
 2 



 [1 point]  𝑣 
 𝑓 

=
 2 α

 𝑐 
 2 + 1 

 1 +α
 𝑐 

 𝑣 
 0 

 Thus, 

δ 𝑣 =  𝑣 
 0 

−  𝑣 
 𝑓 

=  1 −
 2 α

 𝑐 
 2 + 1 

 1 +α
 𝑐 ( ) 𝑣 

 0 

=  1 −  0 .  8165 ( ) 𝑣 
 0 

=  0 .  1835  𝑣 
 0 

 [2 points] 
δ 𝑣 
 𝑣 

 0 
=  18 .  35% 

 δθ =
 𝑣 

 𝑟 

 𝑣 
θ

( )   

=  2 α
 𝑐 ( )   

 [2 points]  δθ =     34 .  74°    



 SOLUTION 

 TQ15  [55 points] 

 PART A: 

 A.1  In cylindrical coordinates, the gravitational  field is given by 

 [1 point]  𝑔 
→

=  𝑔 
→

 𝑟 ( ) =  𝑔  𝑟 ( )    𝑟 
^

=  𝑔     𝑟 
^
,

 where,  in  view  of  the  axial  symmetry,  can  be  computed  from  the  Gauss  law  for  the  gravitational  𝑔 
 field: 

 [1  point]  𝑔 
→

•  𝐴 
→

=−  4π  𝐺  𝑀 
 𝑖𝑛 

,

 where  is the mass enclosed by the surface  , as shown in the figure below:  𝑀 
 𝑖𝑛 

 𝐴 

 Taking the surface to be a cylinder of length  and radius  , from the above equation:  𝐿  𝑟 

 2π  𝑟𝐿𝑔 =−  4π  𝐺  𝑀 
 𝑖𝑛 

 [1 point]  𝑔 =−
 2  𝐺  𝑀 

 𝑖𝑛 

 𝑟𝐿 

 There are two cases (regions): 
 ●  For  , one has  and so  [0.5 points]  𝑟 >  𝑟 

 0 
 𝑀 

 𝑖𝑛 
=  µ  𝐿 

 [1 point]  𝑔 =−  2  𝐺  µ 
 𝑟 

 ●  For  , one has  and so  [0.5 points]  𝑟 <  𝑟 
 0 

 𝑀 =  𝑟  2 

 𝑟 
 0 
 2  µ  𝐿 

 [1 point]  𝑔 =−  2  𝐺  µ 
 𝑟 

 0 

 𝑟 
 𝑟 

 0 
( )

 1 



 A.2  Writing  , in terms of  ,  and  :  𝑔 
→

 𝑟 
 0 ( )  𝐺 µ  𝑟 

 0 

 𝑔 
→

 𝑟 
 0 ( ) =−  2  𝐺  µ 

 𝑟 
 0 

 𝑟 
^

 [1 point]  𝑔 
 0 

≡  𝑔 
→

 𝑟 
 0 ( )|||

||| =  2  𝐺  µ 
 𝑟 

 0 

 A.3 
 The following points should be included in the sketch: 

 ●  [0.5 points] ( 0 ,  0 )
 ●  [0.5 points] ( 1 , −  1 )

 Additionally, 

 ●  the sketch is linear between  and  [0.8 points] ( 0 ,  0 ) ( 1 , −  1 )
 ●  the sketch is concave for  ,  [0.8 points]  𝑟 >  𝑟 

 0 
∼  1 

 𝑟 ( )
 ●  the sketch is drawn below x-axis.  [0.4 points] 

 2 



 A.4  The centripetal acceleration equals the gravitational  acceleration, thus 

 [1 point] 
 𝑣  2 

 𝑅 =  2  𝐺  µ 
 𝑅 

 [1 point] 
 2π  𝑅 

τ =  2  𝐺  µ    

 𝑅 =  2  𝐺  µ 
 2 π τ

 [1 point]  𝐴 =  2  𝐺  µ 
 2 π

 [1 point] α =  1 

 A.5  The potential energy of the particle is given  by 

 𝑈 ( 𝑟 ) =−
 𝑏 

 𝑟 

∫  𝐹 
→

 𝑟 ( ) ⋅  𝑑  𝑟 
→
      

 [1 point]                               =  𝑚 
 𝑏 

 𝑟 

∫  𝑔  𝑟 ( ) 𝑑𝑟 

 [1 point]                               =  2  𝐺𝑚  µ 
 𝑏 

 𝑟 

∫  1 
 𝑟  𝑑𝑟 

 ln  [1 point]                               =  2  𝐺𝑚  µ     𝑟 
 𝑏 ( )

 Where  is a constant that sets the 0 of  .  𝑏  𝑈 

 Note  1:  Usually,  is  set  at  .  For  a  cosmic  string,  this  is  not  possible.  Instead,  we  can  𝑈 =  0  𝑏 =  ∞ 
 choose  , for example, at the string’s surface  (this choice is not relevant!).  Thus  𝑈 =  0  𝑏 =  𝑟 

 0 

 𝑈 =  2  𝐺𝑚  µ ln  𝑟 
 𝑟 

 0 
( )

 Note 2: For completeness, notice that the potential inside the string,  is  𝑟 <  𝑟 
 0 

 𝑈 =  2  𝐺𝑚  µ  𝑟 
 𝑟 

 0 
( ) 2 

−  𝑈 
 0 
,

 where  is  a  constant  (again,  not  relevant!)  that  can  be  chosen  𝑈 
 0 

=  2  𝐺𝑚  µ  𝑟 
 𝑟 

 0 
( ) 2 

−  2     𝐺𝑚  µ    ln  𝑟 
 𝑟 

 0 
( )

 such  that  is  continuous  at  the  surface  of  the  string.  However,  for  the  solution  of  the  problem,  it  is  𝑈 
 not necessary to show this. 

 3 



 A.6  The total energy of the particle is conserved,  thus: 

 [2 point] 
 1 
 2  𝑚  𝑣  2 +  2  𝐺𝑚  µ  ln  𝑟 

 𝑏 ( )   =  2  𝐺𝑚  µ ln
 𝑅 

 𝑚𝑎𝑥 

 𝑏 ( )
 Solving for  :  𝑅 

 𝑚𝑎𝑥 

 [2 point]  𝑅 
 𝑚𝑎𝑥 

=  𝑅  𝑒 
 𝑣  2 

 4  𝐺  µ    

 Notice that the answer does not depend on  .  𝑏 

 A.7  NO.  [1 point] 

 From the previous result, 

 𝑅 
 𝑚𝑎𝑥 

=  𝑅  𝑒 
 𝑣  2 

 4  𝐺  µ ,

 we see that it is   not possible   to escape the gravitational  field since for any speed, there is always a 
 maximum distance  𝑅 

 𝑚𝑎𝑥 
<  ∞  

 PART B: 

 B.1  The energy density is given by 

 [1 point] ρ =  𝑎  𝑇  4 

 Equivalently: 

 [1 point] ρ =  4 σ
 𝑐  𝑇  4 =

π 2  𝑘 
 𝐵 
 4 

 15  ħ 3  𝑐  3  𝑇  4 

 Note  3:  This  result  arrives  from  the  integration  of  the  spectral  energy  density given  by  the  Planck  law 
 over all frequencies. However, it is not required to show this integral. 

 B.2 

 𝑟 
 0 

= ħ
 𝑛 

 1  𝑐 
 𝑛 

 2 

 𝑘 
 𝐵 

 𝑇 

 •  has dimensions of length:  𝑟 
 0 

[ 𝑙 ]
 •  has dimensions of energy  time: ħ × [ 𝑒     𝑡 ]   
 •  has dimensions of speed:  𝑐 [ 𝑙  /  𝑡 ]
 •  has dimensions of energy:  𝑘 

 𝐵 
 𝑇 [ 𝑒 ]   

 4 



 Then: 

[ 𝑙 ] =
 𝑒     𝑡 [ ]

 𝑛 
 1  𝑙 

 𝑡 ⎡⎣ ⎤⎦
 𝑛 

 2 

 𝑒 [ ]

 Since the LHS and the RHS should have the same dimensions, we get: 

 𝑙 [ ]:  1 =  𝑛 
 2 

 𝑒 [ ]:  0 =  𝑛 
 1 

−  1 
 [2 points]  𝑡 [ ]:  𝑛 

 1 
=  𝑛 

 2 

 The solution is 
 [1 point]  𝑛 

 1 
=  1 

 [1 point]  𝑛 
 2 

=  1 

 B.3  The energy of a piece of the string of length  is  𝐿 

 [1 point]  𝐸 =  ρπ  𝑟 
 0 
 2  𝐿 =  𝑀  𝑐  2 

 where  is the mass of the piece. Solving for  :  𝑀    = µ    𝐿 µ

 [1 point] µ =
 ρπ  𝑟 

 0 
 2 

 𝑐  2 

 B.4  The weak field condition is 
 2  𝐺  µ 

 𝑐  2    
 ≪1  

 [1 point]  2  𝐺 
 ρπ  𝑟 

 0 
 2 

 𝑐  2   ≪1 

 [1 point]  2  𝐺 π

 𝑐  2  𝑎  𝑇  4 ( ) ħ 𝑐 
 𝑘 

 𝐵 
 𝑇 ( ) 2 

 ≪1 

 [2 point] 
 2  𝐺𝑎 ħ 2 π

 𝑐  2  𝑘 
 𝐵 
 2     𝑇  2  ≪1 

 Where we used:  ,  , µ =
 ρπ  𝑟 

 0 
 2 

 𝑐  2 ρ =  𝑎  𝑇  4  𝑟 
 0 

= ħ 𝑐 
 𝑘 

 𝐵 
 𝑇 

             2  𝐺𝑎 ħ 2 π

 𝑐  2  𝑘 
 𝐵 
 2     𝑇  2  ≪1 

 2  𝐺 ħ 2 π

 𝑐  2  𝑘 
 𝐵 
 2 

π 2  𝑘 
 𝐵 
 4 

 15  ħ 3  𝑐  3 ( )    𝑇  2  ≪1                         

 2 π 3 

 15 

 𝐺𝑘 
 𝐵 
 2 

  ℏ  𝑐  5 ( ) 𝑇  2  ≪1 

 [2  point] 
 2 π 3 

 15     𝑇  2 

 𝑇 
 𝑃𝑙 
 2  ≪1 

 5 



 where  (known as the Planck  Temperature)  𝑇 
 𝑃𝑙 

=  1 .  416784  ×10  32  𝐾 

 Note 4: the numerical factor  ,  (a 5% error tolerance is accepted) 
 2 π 3 

 15   ∼4 .  13 
 Note 5: From  A.4  we get that 

 2  𝐺  µ =  𝑣  2    

 where  is the speed with which a particle would orbit  a string. Thus the weak field is rewritten as  𝑣 
 𝑣  2 

 𝑐  2    
 ≪1 

 which is equivalent to a non-relativistic condition. 

 B.5  The weak field condition is 

 4 .  13  𝑇 
 𝑇 

 𝑃𝑙 
( ) 2 

 ≪1  

 equivalently 

 [1 point]  ∼2  𝑇 
 𝑇 

 𝑃𝑙 
  ≪1    

 i.  [1 point] 
 2  𝑇 

 𝐸𝑊 

 𝑇 
 𝑃𝑙 

       ∼2×  10  15 

 10  32  ≈1 .  4×  10 − 17  ≪1 

 ii.  [1 point] 
 2  𝑇 

 𝐺𝑈𝑇 

 𝑇 
 𝑃𝑙 

       ∼2×  10  29 

 10  32  ≈1 .  4×  10 − 3  ≪1 

 Note 6: Using the following expression  4 .  13  𝑇 
 𝑇 

 𝑃𝑙 
( ) 2 

 ≪1  

 One gets 

 i.  4 .  13 
 𝑇 

 𝐸𝑊 

 𝑇 
 𝑃𝑙 

( ) 2 

 ∼2 .  1×  10 − 34  ≪1 

 ii.  4 .  13 
 𝑇 

 𝐺𝑈𝑇 

 𝑇 
 𝑃𝑙 

( ) 2 

 ∼2 .  1×  10 − 6  ≪1 

 And are also acceptable answers  (a 5% error tolerance  is accepted) 

 B.6 
 i.  Yes  [0.5 point] 

 ii.  Yes  [0.5 point] 

 6 



 PART C: 

 C.1  From  the  figure,  the  asymptotic  condition  for  the  observer  to  see  a  second  image  is  that  the  light 
 ray  travelling  from  O  directly  to  S  should  bend  and  travel  along  SE.  This  is  the  maximum  angle  of 
 bending. 

 As all angles are small, we can safely use 

 𝑠𝑖𝑛     𝑥     ≈  𝑡𝑎𝑛     𝑥     ≈  𝑥 
 Now, 

 [2 points] 
 𝑝 

 𝑆𝑃 <  δϕ  

<  4π  𝐺  µ 

 𝑐  2 

               <  2 π  2  𝐺  µ 

 𝑐  2 ( )
 [2 points]                   <  2 π  2 π 3 

 15 ( )  𝑇  2 

 𝑇 
 𝑃𝑙 
 2 ( )

 And  𝑆𝑃 ≈  𝐷 
 𝑂𝐸 

−  𝐷 
 𝐸𝑆 ( )

 [2 points]  𝑝 <  4 π 4 

 15  𝑇 
 𝑃𝑙 
 2  𝑇  2  𝐷 

 𝑂𝐸 
−  𝐷 

 𝐸𝑆 ( )
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 C.2  In the figure, the blue lines represent the bending  of two light rays corresponding to the images 
 O1 and O2. Note that  and  . Thus the angle  𝐷 

 𝐸𝑆 
≈  𝐷 

 𝐸𝑆  1 
≈  𝐷 

 𝐸𝑆  2 
 𝐷 

 𝑂𝑆 
≈  𝐷 

 𝑂𝑆  1 
≈  𝐷 

 𝑂𝑆  2 
 and  .  is the angular  separation we are looking for.  𝑆  1  𝐸𝑂 ≈  𝑆  2  𝐸𝑂 ≡ α  𝑆  1  𝑂𝐸 ≈  𝑆  2  𝑂𝐸 ≡ β  2 α

 [2 points] 

 Further, notice 
 [1 point] α + β =  δϕ 

 Using law of sines in the triangle  EOS1 

 [1 point] 
α

 𝐷 
 𝑆  1  𝑂 

= β
 𝐷 

 𝐸𝑆  1 

 we get 

 [2 points]  2 α =  2δϕ 
 𝐷 

 𝑂𝐸 
− 𝐷 

 𝐸𝑆 

 𝐷 
 𝑂𝐸 

( )
 C.3  If  𝐷 

 𝑂𝐸 
=  2  𝐷 

 𝐸𝑆 
,    

 [2 points]  2 α =  δϕ =  2 π  2 π 3 

 15 ( )  𝑇 
 𝐺𝑈𝑇 
 2 

 𝑇 
 𝑃𝑙 
 2 ( ) ≈1 .  29×  10 − 5 

 and 

 δϕ =  1 .  22 λ
 𝐷 

 Thus, using λ ∈ [ 3×  10 − 7  𝑚 ,  8×  10 − 7  𝑚 ]

 [2  points]  𝐷 =  1 .  22 λ
 δϕ ∈  3 .  75×  10 − 2  𝑚 ,  7 .  51×  10 − 2  𝑚 [ ]

 Any answer within this interval is valid. 

 A remarkable result of this model is light deflection by a cosmic string, which leads to the possibility 
 of detection through gravitational lensing. For instance, cosmic string trings moving across the line of 
 sight with respect to an Earth-based observer will cause line-like discontinuities as shown in the 
 figure below (taken from [1]). 

 8 



 [1] M. V. Sazhin, O. S. Khovanskaya, M. Capaccioli, G. Longo, M. Paolillo, G. Covone, N. A. 
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